Title: Solving Quadratic Equations using Square Roots
Class: Math 107
Author: Jason Miner
Instructions to tutor: Read instructions and follow all steps for each problem exactly as given.
Keywords/Tags: Quadratic, equation, square root, solution

Solving Quadratic Equations using Square Roots

Purpose:

This is intended to refresh your knowledge about solving quadratic equations using square roots.
Recall that a quadratic equation is an equation that can be written in the form $a x^{2}+b x+c=0$, with $a \neq 0$. For example, $3 x^{2}+4 x-7=0,6-x^{2}=2 x$, and $x(x+6)=14$ are all quadratic equations. Note that the second two equations would require a couple algebraic steps to be put into the form shown above.

We can solve $x^{2}-9=0$ by factoring; $(x-3)(x+3)=0$ and so $x=-3,3$.

In certain situations, namely when a quadratic equation does not appear to have an x term, we can solve the quadratic equation by isolating the squared term and taking the square root of both sides.

Example: Solve $x^{2}-9=0$ using square roots.

This time, we isolate the squared term. So $x^{2}-9=0 \Rightarrow x^{2}=9$.

Now we will take the square root of each side to solve for x.

$$
x^{2}-9=0 \quad \Rightarrow \quad x^{2}=9 \quad \Rightarrow \quad \sqrt{x^{2}}= \pm \sqrt{9} \quad \Rightarrow \quad x= \pm 3
$$

You should note the inclusion of the \pm sign on the right hand side of the equation, after the square root is applied. This is because when you square -3 or 3 , you obtain 9 for the result.

Here is a summary of this method.

Solving Quadratic Equations using the Root Method:

1. Isolate the squared term.
2. Take the square root of both sides; remember to use \pm.
3. Solve.

Example: Now it's your turn. Solve $5 t^{2}-125=0$.

First you need to isolate the squared term:

Do you now have $t^{2}=25$? If not, first add 125 to each side and then divide both sides by 5 .

Now take the square root of each side.

Did you obtain $t= \pm 5$? If you only got one solution, what can you do to correct this?

This method will work with more complicated squared terms as well.

Example: Solve $(x+4)^{2}=169$.

As the squared term is already isolated, we are ready to take the square root of each side.

$$
(x+4)^{2}=169 \Rightarrow \sqrt{(x+4)^{2}}= \pm \sqrt{169} \Rightarrow x+4= \pm 13
$$

Now we can solve for x by subtracting 4 from each side: $x=-4 \pm 13$

So we obtain the solutions $x=9$ and $x=-17$.

Try the following on your own.

1. Solve each equation using square roots.
(a) $x^{2}-81=0$
(b) $4 a^{2}-13=3$
(c) $(2 y-3)^{2}-25=0$
(d) $(x+1)^{2}-8=0$

Check your answers - If you did not get these, consult a tutor for help.

1. (a) $x= \pm 9$
(b) $a= \pm 2$
(c) $y=-1,4$
(d) $x=-1 \pm 2 \sqrt{2}$
